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Abstract

We present a conservative second order accurate finite volume discretization of the magnetohydrodynamics equations
including the Hall term. The scheme is generalized to three-dimensional block-adaptive grids with Cartesian or generalized
coordinates. The second order accurate discretization of the Hall term at grid resolution changes is described in detail.
Both explicit and implicit time integration schemes are developed. The stability of the explicit time integration is ensured
by including the whistler wave speed for the shortest discrete wave length into the numerical dissipation, but then second
order accuracy requires the use of symmetric limiters in the total variation diminishing scheme. The implicit scheme
employs a Newton–Krylov–Schwarz type approach, and can achieve significantly better efficiency than the explicit scheme
with an appropriate preconditioner. The second order accuracy of the scheme is verified by numerical tests. The parallel
scaling and robustness are demonstrated by three-dimensional simulations of planetary magnetospheres.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Ideal or resistive magnetohydrodynamics (MHD) provides a fairly accurate physical model for a wide
range of laboratory and space plasma problems. In certain applications, however, some of the MHD approx-
imations become invalid, and the simulations deviate from physical reality. An essential example is reconnec-
tion of the magnetic field. Flows around unmagnetized planets and moons also show features, such as
asymmetry of the pile-up boundary, that cannot be modeled with classical MHD.

One option to better describe the physics is using full or hybrid particle schemes (see e.g. [3]). While particle
and hybrid schemes can successfully model these problems, these algorithms are very costly, especially for
three-dimensional (and possibly time dependent) simulations. An alternative approach is to maintain the fluid
description of the plasma but allow for the decoupling of the ion and electron fluids.

The Hall term is part of the generalized Ohm’s law and it describes the relative speed between ions and elec-
trons. The magnetic field lines are frozen in the electron fluid, but not in the ion fluid due to the Hall effect. The
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Hall effect is important at length scales shorter than the ion skin depth. Including the Hall term modifies the
induction equation and the total energy density equation of MHD.

Hall MHD seems to be the minimal modification required to reproduce the fast reconnection process suc-
cessfully modeled by particle and hybrid schemes [3]. In terms of magnetospheric physics, it is found that the
Hall effect is important for both the dayside magnetopause [13] and the nightside magnetotail [14].

Modeling the magnetic reconnection by various methods has been studied in detail for the Geospace Envi-
ronment Modeling Challenge [3,25,16]. For this non-driven reconnection problem the reconnection rate
increases as the Hall parameter is increased. On the other hand [12], found that for externally driven magnetic
reconnection the presence of the Hall current does not necessarily enhance the total reconnected flux.

In this paper, we describe a finite volume Hall MHD scheme on a three-dimensional block-adaptive Carte-
sian or generalized coordinate grid with both explicit and implicit time discretization. To put our work in con-
text, we briefly describe some of the published Hall MHD schemes that are similar to our effort. There are
many codes that use relatively simple numerical techniques (e.g. explicit time integration with hyper-resistiv-
ity) on structured two-dimensional grids. These schemes would not be efficient for three-dimensional calcula-
tions and do not generalize to adaptive grids. Three-dimensional Hall MHD has been successfully modeled by
pseudo-spectral codes (e.g. [11,5]), but spectral schemes are not suitable for adaptive grids. The VooDoo code
by Huba [7,8] is a three-dimensional high order finite volume scheme using a gas kinetic type flux function and
explicit time discretization with subcycling for the Hall physics. We use a similar finite volume approach for
the spatial discretization, but use different flux functions and we use implicit time integration scheme instead of
subcycling. Chacon and Knoll [4] have developed an implicit scheme for the incompressible Hall MHD equa-
tions in two dimensions. Our time integration scheme is similar, but the formulation of the MHD equations is
quite different, since we use the usual MHD variables, while Chacon and Knoll use the vector potential and
the stream and vorticity functions. The preconditioner is also quite different. Probably the closest to our effort
is the recently developed Magnetic Reconnection Code (MRC) [2], a massively parallel Hall MHD code with a
patch based adaptive mesh refinement, CWENO type numerical flux, and Newton–Krylov type (semi-)implicit
time integration scheme. In the published papers known to us, MRC has been applied to the Hall MHD equa-
tions in two dimensions.

We develop a parallel, explicit and/or implicit three-dimensional Hall MHD scheme and implement it into
the BATSRUS code [17]. BATSRUS solves the MHD equations with second order shock-capturing total var-
iation diminishing (TVD) schemes on a block-adaptive grid. Block-adaptive grids [19] consist of self-similar
blocks as shown in Fig. 1. Each block has a simple logically Cartesian geometry. The grid is refined by dividing
a block into 8 smaller blocks, while coarsening is achieved by merging 8 smaller blocks into a larger one. The
BATSRUS code achieves excellent scaling on distributed memory parallel super-computers both with explicit
Fig. 1. The block-adaptive grid structure. Blocks are refined into 8 octants (left panel). The blocks communicate via layers of ghost cells
(right panel).
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and with implicit time-stepping. The implicit scheme is based on the Jacobian-free Newton–Krylov–Schwarz
(NKS) method and it can be efficiently combined with the explicit scheme on a block-by-block basis [21].

Our goal is to add the new Hall MHD capability into BATSRUS while preserving compatibility with all the
essential features: shock-capturing, high resolution second order TVD schemes, efficient explicit and implicit
time stepping, block-adaptive grid for both Cartesian and non-Cartesian geometries, and good parallel scaling
on distributed memory computers. We also allow for solving the Hall MHD in a limited region by introducing
a spatially varying coefficient for the Hall term.

Section 2 presents the Hall MHD equations in conservation form and we discuss the analytic properties
that are important for the discretization. In Section 3, we describe the second order discretization. Simple
numerical tests as well as some typical geophysics applications are presented in Section 4. The tests demon-
strate the second order accuracy of the scheme and the efficiency of the implicit time stepping scheme. We also
demonstrate good parallel scaling up to more than thousand processors. We conclude in Section 5.

2. Equations

In Hall MHD the electric field is modified from the resistive MHD expression
E ¼ �v� Bþ gJ ð1Þ

to the Hall MHD form
E ¼ �v� Bþ gJþ 1

ne
J� B; ð2Þ
where v, B, and J are the velocity, magnetic field and current vectors, respectively, g is the resistivity, n is the
number density and e is the electron charge. Note that the magnetic units are chosen such that the magnetic
permeability of vacuum l0 is unity. For sake of simplicity we neglect the electron pressure gradient term $pe/
(ne), although it can be discretized the same way as the Hall term J � B/(ne). The electron inertia is also
neglected.

The electric field enters the induction and energy equations thus the MHD equations including the Hall
term become
oq
ot
¼ �r � ðqvÞ; ð3Þ

oqv

ot
¼ �r � ðvqvþ Ip þ I

B2

2
� BBÞ; ð4Þ

oe
ot
¼ �r � ½vðeþ pÞ þ ðvþ vH Þ � ðIB2 � BBÞ � B� gJ�; ð5Þ

oB

ot
¼ �r� ½�ðvþ vH Þ � Bþ gJ�; ð6Þ
where I is the identity matrix, q and p are the mass density and the thermal pressure. The Hall velocity is de-
fined as
vH ¼ �
J

ne
¼ �r� B

ne
; ð7Þ
while the total energy density is
e ¼ eþ B2

2
¼ p

c� 1
þ qv2

2
þ B2

2
; ð8Þ
where e is the hydrodynamic energy and c is the adiabatic index.
For space physics simulations it is often useful to split the magnetic field into an analytic part and a numer-

ical part B = B0 + B1 [20]. The analytic B0 is a divergence and curl free potential field (e.g. the dipole field of a
planet), while B1 contains the rest of the field. We allow B0 to be time dependent. The advantage of this split-
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ting is that the numerical solution is more accurate and robust where gradients of B0 are large. Also one can
introduce a reduced total energy density
e1 ¼ eþ B2
1

2
; ð9Þ
that does not contain B0 or B2
0 which allows much more accurate and robust results in regions where B0 is

large. The splitting results in the following energy and induction equations:
oe1

ot
¼ �r � ½vðeþ pÞ þ ðvþ vHÞ � ðIB2

1 � B1BÞ þ vH B0 � B1 � B� gJ� � B1 �
oB0

ot
; ð10Þ

oB1

ot
¼ �r� ½�ðvþ vHÞ � Bþ gJ� � oB0

ot
: ð11Þ
There are only a few extra terms relative to classical MHD in the induction and energy density equations all
proportional to vH. This seemingly small modification of the MHD equations is quite challenging to imple-
ment in a conservative, accurate and efficient manner. There are two challenges:

� There is a second order spatial derivative of the magnetic field in the induction equation that cannot be
rewritten into a simple Laplace operator.
� The maximum wave speed increases from the fast magnetosonic wave to the whistler wave speed that is

approximately inversely proportional to the wave length.

The first problem is especially difficult because of the adaptive block structure of the BATSRUS code. It
takes a lot of care to obtain a spatially second order accurate discretization at resolution changes. The second
problem is important, because the shortest wave length that can be represented on the grid is twice the grid
resolution Dx, so the fastest wave speed can be estimated as [8]
cw ¼ jvj þ cf þ
jBjp
enDx

; ð12Þ
where cf is the classical MHD fast magnetosonic speed. The maximum stable time step for an explicit time
integration scheme is
Dt <
Dx
cw
/ Dx2 ð13Þ
for small enough Dx. This can make the explicit time integration algorithms rather inefficient as the grid res-
olution is increased. An implicit scheme can potentially overcome this problem, since the time step is not lim-
ited by the CFL condition.

An additional difficulty arises, since the numerical dissipation required for the stability of the explicit
numerical scheme is also proportional to the fastest wave speed of the hyperbolic system of equations, and
this can reduce the spatial order of accuracy by one order. To see this, let us consider the usually first order
accurate local Lax–Friedrichs scheme
U nþ1 � U n

Dt
¼ � F n

iþ1 � F n
i�1

2Dx
þ ciþ1=2ðUn

iþ1 � Un
i Þ � ci�1=2ðUn

i � U n
i�1Þ

2Dx
; ð14Þ
where U is one of the conservative variables, F is the corresponding physical flux function, and c is the fastest
wave speed. The superscripts denote the time level and the subscripts correspond to the spatial grid indexes.
The index i + 1/2 identifies the cell face between the cell centers i and i + 1. The second term on the right hand
side is the numerical dissipation and to lowest order in Dx it is proportional to
Dx
o

ox
c
oU
ox

� �
: ð15Þ
Since c / 1/Dx the local Lax–Friedrichs scheme is inconsistent for the Hall MHD equation.
In the following section we will describe our solutions to these challenging problems.
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3. Numerical discretization

3.1. Spatial discretization of the current for uniform grid

A second order conservative scheme requires a second order accurate calculation of the physical fluxes at
the center of the cell faces. Since the flux for the magnetic field B contains the Hall term J � B/ne and
J = $ � B, we have to calculate the current with second order accuracy at the cell faces. For the x face of
a uniform Cartesian grid one can use simple central differencing and averaging as needed:
J x
iþ1=2;j;k ¼

Bz
i;jþ1;k þ Bz

iþ1;jþ1;k � Bz
i;j�1;k � Bz

iþ1;j�1;k

4Dy
�

By
i;j;kþ1 þ By

iþ1;j;kþ1 � By
i;j;k�1 � By

iþ1;j;k�1

4Dz

J y
iþ1=2;j;k ¼

Bx
i;j;kþ1 þ Bx

iþ1;j;kþ1 � Bx
i;j;k�1 � Bx

iþ1;j;k�1

4Dz
�

Bz
iþ1;j;k � Bz

i;j;k

Dx

J z
iþ1=2;j;k ¼

By
iþ1;j;k � By

i;j;k

Dx
�

Bx
i;jþ1;k þ Bx

iþ1;jþ1;k � Bx
i;j�1;k � Bx

iþ1;j�1;k

4Dy

ð16Þ
and similar formulas apply to the other faces. Note that the normal derivatives use the two closest cell centers
only, while the tangential derivatives require 4 cell centers and averaging in the i direction. Consequently one
needs to use the first layer of ghost cells not only at the faces between the blocks but also along the 12 edges of
the block. Fig. 2 shows the stencil used for calculating the three components of the current at the x face center
on a two-dimensional grid.

3.2. Spatial discretization of the current at resolution changes

The second order accurate central difference formulas (16) used to calculate the curl of B on a uniform grid
can be used at resolution changes as well if the ghost cells are filled in with at least third order accurate mag-
netic field. An alternative is to use a one sided derivative. For example the y gradient of Bz at the cell center j

can be approximated as
oBz

oy

� �
j

¼
�3Bz

j þ 4Bz
jþ1 � Bz

jþ2

2Dy
: ð17Þ
We use this latter approach to avoid the use of ghost cells in the tangential (relative to the face) derivatives on
the coarse side of resolution changes. On the fine side we take the first approach, ie. interpolate the magnetic
field to the fine ghost cells with third order accuracy. This is not a unique choice, there are many other possible
discretizations.

3.3. Spatial discretization of the magnetic field at resolution changes

Let us consider a face orthogonal to the x direction indexed by 1/2, j, k and assume that the ghost cells 0, j,
k cover the domain of a coarser block. We are interested in calculating the current for the fine block because
the flux on the coarse side is overwritten by the sum of the 4 fine fluxes [1] in a conservative AMR scheme. The
interpolation of the magnetic field has to be third order accurate so that the derived current can be second
J

BB

B

B B

B

Fig. 2. The stencil for calculating the face centered current on a two-dimensional grid.
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order accurate. Third order accuracy is quite complicated to achieve in finite volume discretization, so we take
a finite difference approach and regard the cell center values to be point values (and not cell averages).

The first step is to interpolate the coarse cell values in the tangential direction to the yj, zk coordinates. For
example the j = k = 1 index is interpolated from 3 coarse cell values covering the fine ghost cells j, k 2 {�1, 0},
j, k 2 {1, 2} and j, k 2 {3, 4}. In general when both j and k are odd numbers the interpolation formula is
Fig. 3
dimen
and th
B�1=2;j;k ¼
5B�1=2;j�3=2;k�3=2 þ 30B�1=2;jþ1=2;kþ1=2 � 3B�1=2;jþ5=2;kþ5=2

32
: ð18Þ
Note that the 3 coarse cells are collinear with the fine cell along a diagonal line in the y, z plane. Cells with even
j and k or even and odd j and k use a different set of coarse cells but the weights are the same. Next the fine
cells inside the fine block and the interpolated coarse cell value are interpolated in the x direction along the j, k

grid lines
B0;j;k ¼
8B�1=2;j;k þ 10B1;j;k � 3B2;j;k

15
: ð19Þ
The same interpolation scheme is used for the other 5 faces. Fig. 3 shows the interpolation weights for the two-
dimensional case.

The edge ghost cells are filled in with a similar approach. For example the edge ghost cells indexed by 0, 0, k

are interpolated from 2 fine cells inside the fine block and the coarse cell values interpolated in the z direction
B0;0;k ¼
8B�1=2;�1=2;k þ 10B1;1;k � 3B2;2;k

15
; ð20Þ
where
B�1=2;�1=2;k ¼
5B�1=2;�1=2;k�3=2 þ 30B�1=2;�1=2;kþ1=2 � 3B�1=2;�1=2;kþ5=2

32
ð21Þ
for odd values of k and
B�1=2;�1=2;k ¼
5B�1=2;�1=2;kþ3=2 þ 30B�1=2;�1=2;k�1=2 � 3B�1=2;�1=2;k�5=2

32
ð22Þ
for even values of k. The edges parallel with the x and y axes are filled in similarly.

3.4. Discretization of the current for non-Cartesian geometries

We use the generalized coordinate approach to calculate the current with second order accuracy on non-
Cartesian grids. The formulas developed in the previous subsections for taking gradients in the x, y and z
5/32

30/32

10/15 3/158/15

3/32

. The weights used to interpolate the magnetic field to the fine ghost cell (dashed circle) with 3rd order accuracy on a two-
sional grid. First the coarse ghost cell centers (large dots) are interpolated in the vertical direction, next the interpolated value (circle)
e fine cell centers (small dots) are interpolated in the horizontal direction.
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directions can be used without any change to obtain second order accurate derivatives of the magnetic field
components Bx, By and Bz with respect to the generalized coordinates n, g, f. From these one can obtain
the x, y and z derivatives using the coordinate transformation matrix T = o(n, g, f)/o(x, y, z), for example
oBz

oy
¼ on

oy
oBz

on
þ og

oy
oBz

og
þ of

oy
oBz

of
: ð23Þ
The elements of matrix T can either be calculated analytically, or they can be obtained numerically by discret-
izing and inverting T�1 = o(x, y, z)/o(n, g, f). Elements of T�1 at the face i + 1/2, j, k are obtained with the
following fourth order accurate formulas:
ox

on

� �
iþ1=2;j;k

¼ 27ðxiþ1;j;k � xi;j;kÞ � ðxiþ2;j;k � xi�1;j;kÞ
24Dn

;

ox

og

� �
iþ1=2;j;k

¼
9 ox

og

� �
i;j;k
þ 9 ox

og

� �
iþ1;j;k

� ox
og

� �
i�1;j;k

� ox
og

� �
iþ2;j;k

16
;

ox

of

� �
iþ1=2;j;k

¼
9 ox

of

� �
i;j;k
þ 9 ox

of

� �
iþ1;j;k

� ox
of

� �
i�1;j;k

� ox
of

� �
iþ2;j;k

16
;

ð24Þ
where the transverse gradients are obtained as
ox

og

� �
i;j;k

¼ 8ðxi;jþ1;k � xi;j�1;kÞ � ðxi;jþ2;k � xi;j�2;kÞ
12Dg

; ð25Þ

ox

of

� �
i;j;k

¼ 8ðxi;j;kþ1 � xi;j;k�1Þ � ðxi;j;kþ2 � xi;j;k�2Þ
12Df

: ð26Þ
Here we can safely use the ghost cells, since the coordinates of the ghost cell centers are exact. The formulas
for the y and z faces can be derived in an analogous fashion.

3.5. Second order explicit scheme

The main challenge for the explicit time integration scheme is to preserve the stability without losing the
order of accuracy. In the previous subsections we showed how the current can be discretized at the cell inter-
faces. Using this current it is straightforward to construct the second order accurate physical flux. The remain-
ing task is to use a numerical dissipation that is stable and second order accurate. As we have shown the naive
implementation of the first order Lax–Friedrichs scheme (14) is inconsistent for the Hall MHD equations.

We use the MUSCL approach [22] to get a consistent and second order accurate TVD scheme. The state
variable U is extrapolated from the left and right cell centers to the cell face at i + 1/2 as
U L
iþ1=2 ¼ Ui þ

1

2
DUi;

U R
iþ1=2 ¼ Uiþ1 �

1

2
DU iþ1;

ð27Þ
where DU i is the limited slope in cell i. The divergence of the numerical flux (the last term in 14) is modified to
Ui ¼
ciþ1=2ðU R

iþ1=2 � U L
iþ1=2Þ � ci�1=2ðU R

i�1=2 � U L
i�1=2Þ

2Dx
: ð28Þ
In classical MHD c does not depend on Dx and the numerical dissipation is a second order term as long as the
limited slopes are consistent, i.e. DUi ! ðUiþ1 � UiÞ when (Ui+1 � Ui) ? (Ui � Ui�1). For Hall MHD we need
higher order accuracy, and it turns out that only a certain class of limiters can be used. The simplest, most
robust and quite commonly used minmod limiter is defined as
DU i ¼ minmodðU iþ1 � Ui;U i � Ui�1Þ; ð29Þ
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where the minmod function returns 0 if the arguments have different signs, otherwise it returns the argument
with the smallest magnitude. The minmod limiter is asymmetric in the sense that it either takes the left slope or
the right slope, depending on the second derivative of the solution. Due to the asymmetry the numerical flux in
(28) is proportional to cDx2o3U/ox3 (here we take c to be constant for simplicity) so the scheme is first order
accurate only in general.

On the other hand the monotonized central limiter
DUi ¼ minmod bðU iþ1 � U iÞ; bðUi � U i�1Þ;
Uiþ1 � Ui�1

2

� �
ð30Þ
with 1 < b 6 2 is symmetric as long as the last argument, (the central difference) has the smallest magnitude.
This is true in sufficiently smooth parts of the solution and away from local extrema. Substituting the central
difference into equations (27) and then into (28) we get
U ¼
ciþ1=2 Uiþ1 � Uiþ2�Ui

4
� U i � Uiþ1�Ui�1

4

� 	
2Dx

�
ci�1=2 U i � Uiþ1�Ui�1

4
� U i�1 � Ui�Ui�2

4

� 	
2Dx

: ð31Þ
For sufficiently smooth solutions this can be rewritten up to the lowest order non-zero terms in Dx as
Ui ¼ �
ðciþ1=2 þ ci�1=2Þo

4U
ox4





i
Dx4 þ ðciþ1=2 � ci�1=2Þo

3U
ox3





i
Dx3

16Dx
: ð32Þ
Since according to (12)c / 1/Dx the first term on the right hand side is proportional to Dx2. The second term
contains the difference (ci+1/2 � ci�1/2) that can be approximated as (oc/oU) � (oU/ox)iDx / O(1), so the second
term is also proportional to Dx2. This proves that the use of a symmetric limiter achieves the required second
order accuracy.

We note that for ordinary MHD (or any hyperbolic system where the wave speed does not depend on the
wave length) the MC limiter has a third order dissipation in smooth regions as opposed to the asymmetric
minmod (or superbee) limiters that have second order dissipation at best. One can also construct limiters with
different weights in the left and right extrapolations that give third order accuracy for the physical fluxes as
well. Using
DLUi ¼ minmod bðU iþ1 � U iÞ;bðUi � Ui�1Þ;
2Uiþ1 � Ui � Ui�1

3

� �
ð33Þ

DRUi ¼ minmod bðU iþ1 � U iÞ; bðUi � U i�1Þ;
Uiþ1 � Ui � 2U i�1

3

� �
ð34Þ
for the left and right extrapolations in (27), respectively, results in a third order accurate scheme in sufficiently
smooth regions away from local extrema. This is the same as Koren’s limiter [9] but with an adjustable b
parameter.

Finally, we point out the similarity between the dissipation terms arising from the symmetric limiter and the
fourth (or higher) order hyper-resistivity used in several Hall MHD codes (e.g. [3,25,24]). If we substitute the
dominant term of cw in (12) into the first term of (32) we obtain the numerical dissipation
Ui ¼ �
jBjp
8en

o4U
ox4






i

Dx2: ð35Þ
This is essentially the same form as the fourth order hyper-resistivity often used to stabilize the induction
equation. Note, however, that the TVD scheme switches to lower order dissipation where the solution is
not smooth, while the hyper-resistivity is applied uniformly everywhere. Another difference is that the TVD
scheme is applied to all of the Hall MHD equations, while the hyper-resistivity is only applied to the induction
equation, and the other equations are usually stabilized in a different manner.

We also note that the explicit Hall Diffusion Scheme (HDS) described by Sullivan and Downes [15] also
results in a fourth order hyper-resistivity term once the update equations for the By and Bz components (equa-
tions 29 and 30 in their paper) are substituted into each other. The HDS scheme is essentially a two stage for-
mulation of the one stage hyper-resistivity scheme.
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3.6. Implicit time discretization

We use the Newton–Krylov–Schwarz (NKS) approach to formulate the implicit time integration scheme
for Hall MHD. Thanks to the general implementation of the implicit scheme in the BATSRUS code [21], once
the explicit Hall MHD scheme is implemented, the implicit time integration works as well. To make it efficient,
however, the preconditioner needs to take into account the Hall term. This is not a simple task. For sake of
simplicity and efficiency the preconditioner is based on the Jacobian that uses the nearest 6 neighbor cells only
on a three-dimensional grid. Due to the higher order derivatives, the stencil of the Hall term is much more
extended. We found that the preconditioner becomes much more effective if the Hall term is discretized on
a stencil that is as compact as possible. In particular, when the current is calculated for the X face at i + 1/
2,j, k, all x derivatives should use only the i + 1 and i cell centers only.

An additional difficulty arises due to the particular choice of the implicit scheme. For sake of efficiency a
spatially first order local Lax–Friedrichs (or HLL or Roe) discretization is used in the matrix-free calculation
of the Jacobian. The corresponding error term is cD xDt which is second order for classical MHD, but it is
only first order accurate for Hall MHD, since c / 1/Dx and for the implicit scheme the time step is decreased
as Dt / Dx as the resolution is increased.

To resolve this problem, we exploit that for the implicit time step it is not necessary to include the full whis-
tler wave speed into the numerical flux function. In fact, our numerical tests confirmed that it leads to signif-
icant degradation of accuracy, if we use the full speed c = cw in the numerical flux. Since the stability of the
implicit scheme does not depend on the numerical dissipation, one can use a reduced speed
c ¼ juj þ cf þ W
pjBj
Dxen

; ð36Þ
where W < 1. According to Chacon and Knoll [4] a good choice is W / Dtexpl/Dt, where Dtexpl is the time step
for the explicit scheme. This way W / Dx, the c used in the numerical flux becomes independent of the reso-
lution, and the second order accuracy is recovered. An even simpler choice is to set W = 0 that seems to work
fine in our experience.

3.7. Preconditioner

The general preconditioner described in [21] (and implemented in BATSRUS) calculates the Jacobian with
the assumption that the face flux in the Lax–Friedrichs scheme is
Fiþ1=2;j;k ¼
Fi;j;k þ Fiþ1;j;k

2
ð37Þ
and Fi,j,k is a function of the local state variable Ui,j,k only. The Hall term in the cell centered flux function used
by this preconditioner is
FHðBÞi;j;k ¼ ðvH B� BvHÞi;j;k ¼ �
JB� BJ

ne

� �
i;j;k

; ð38Þ
where the current Ji,j,k is evaluated with a cell centered approximation. As we take the partial derivatives
oFi,j,k/oUi,j,k, the current Ji,j,k will behave as a constant multiplier, since it depends on the magnetic field in
the neighbor cells only. Unfortunately this neglects the most important terms that are responsible for the whis-
tler wave, and make the preconditioner useless for a Hall term dominated problem. To obtain an efficient pre-
conditioner, we need to add the partial derivatives that are not included by the general preconditioner
algorithm.

The face flux of the magnetic field contains the current Ji+1/2,j,k that is discretized by (16) and depends on
the cell values Bi,j,k,Bi,j±1,k,Bi,j,k±1, Bi+1,j,k,Bi+1,j±1,k, and Bi+1,j,k±1. For sake of computational efficiency, the
preconditioner is limited to the adjacent cells (i ± 1, j, k), (i, j ± 1, k), and (i, j, k ± 1) so that the approximate
Jacobian is restricted to a block heptadiagonal matrix. This means that we drop all fractions in (16) that have
four terms in the numerator. The remaining two fractions describe the orthogonal (with respect to the face)
derivatives of the tangential components of the magnetic field. Substituting these current terms into the dis-
cretized induction equation results in
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RH ðBy
i;j;kÞ ¼ �Dx�2 Bx

ne

� �
iþ1=2;j;k

ðBz
iþ1;j;k � Bz

i;j;kÞ þ
Bx

ne

� �
i�1=2;j;k

ðBz
i�1;j;k � Bz

i;j;kÞ
" #

ð39Þ

RH ðBz
i;j;kÞ ¼ þDx�2 Bx

ne

� �
iþ1=2;j;k

ðBy
iþ1;j;k � By

i;j;kÞ þ
Bx

ne

� �
i�1=2;j;k

ðBy
i�1;j;k � By

i;j;kÞ
" #

ð40Þ
and similar terms for the y and z faces. Here RH = �$ � FH is the change of B due to the Hall term. The partial
derivatives of the Bx/(ne) terms are properly approximated by the general algorithm that calculates
[(oF/oU)i+1 � (oF/oU)i�1]/(2Dx). The extra terms that correspond to the partial derivatives of the current with
respect to the magnetic field, are obtained analytically and added to the Jacobian matrix, e.g.
oRHðBy
i;j;kÞ

oBz
iþ1;j;k

¼ �Dx�2 Bx

ne

� �
iþ1=2;j;k

: ð41Þ
Although we dropped a lot of terms from (16), the preconditioner still contains the essential terms that are
responsible for the whistler waves. To see this, let us take the case when the ambient magnetic field is homo-
geneous and aligned with the x axis, the velocity is zero, and the density is also homogeneous. Then (39) is a
discretization of
oBy

ot
¼ �Bx

ne
o2Bz

ox2
ð42Þ

oBz

ot
¼ þBx

ne
o2By

ox2
ð43Þ
that can be combined to
o2By

ot2
¼ � Bx

ne

� �2
o4By

ox4
: ð44Þ
Substituting By = expi(kx � xt) gives the dispersion relation
x2 ¼ Bx

ne

� �2

k4 ð45Þ
and the wave speed for a fixed wave number is
c ¼ x
k
¼ kjBxj

ne
¼ 2pB

kne
ð46Þ
that is the whistler wave speed. Substituting k = 2Dx results in the last and dominant term of (12).

3.8. Preconditioner for generalized coordinates

To derive the preconditioner in generalized coordinates, we start from the discrete form of the induction
equation for a particular grid cell and we deal with the contribution of the Hall term only:
RHðBÞ ¼
1

V

X
s

As

nse
� ðBsJs � JsBsÞ; ð47Þ
where V is the cell volume, s indexes the faces of the cell, and As is the outward pointing area vector for face s.
The current Js is discretized with partial derivatives with respect to the generalized coordinates multiplied by
the coordinate transformation matrix T = on/ox as in (23). For component Bj the above equation becomes
RHðBjÞ ¼
1

V

X
s

As
i

nse
ðBs

i �jkl � Bs
j�iklÞT s

kaoaBs
l; ð48Þ
where � is the Levi–Civita tensor and summation is implied for repeated indexes. The i, j, k, l indexes are for
the Cartesian coordinates x, y, z, while the a index is for the generalized coordinates n, g, f.
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Just like in the Cartesian case, the partial derivatives of RH with respect to Bs
i and Bs

j are properly taken into
account by the general algorithm. We only need to calculate the extra terms that correspond to the derivatives
of Bl. Since we constrain the preconditioner matrix to the neighboring cells, only the discrete difference along
the direction a = r normal to face s is kept when taking the derivatives:
orBs
l ¼ �

BS
l � Bl

Dr
; ð49Þ
where Bs
l is the magnetic field at the center of the neighbor cell on the other side of face s. The plus sign is taken

for the face pointing toward the positive r direction. Now we are ready to calculate the extra elements of the
oRH/oB matrix needed for the preconditioner:
oRH ðBjÞ
Bl

¼ 1

V

X
s

�As
i

nse
ðBs

i �jkl � Bs
j�iklÞ

T s
kr

Dr
; ð50Þ

oRH ðBjÞ
BS

l

¼ � As
i

Vnse
ðBs

i �jkl � Bs
j�iklÞ

T s
kr

Dr
: ð51Þ
One may further simplify the preconditioner by taking the cell center values n, Bi, Bj and Tkr instead of the
face centered values ns;Bs

i ;B
s
j and T s

kr, respectively. For sake of computational efficiency we have implemented
this simplified form.

As a consistency check we show that the preconditioner developed for the generalized coordinates simplifies
to the Cartesian preconditioner for Cartesian coordinates, when Tkr/Dr = dkr/Dxk and As

i=V ¼ �dis=Dxs. Here
d denotes the Kronecker delta and r = s = k = i. With these the above formulas simplify to
oRH ðBjÞ
Bl

¼
X

s

Bs
s�sjl

Dx2
s nse

; ð52Þ

oRH ðBjÞ
BS

l

¼ � Bs
s�sjl

Dx2
s nse

: ð53Þ
This is the Cartesian preconditioner written in a general notation. For example, for s = x, j = y, l = z and
S = i + 1 the last equation coincides with (41).

4. Numerical tests

4.1. Propagation of the whistler wave

To verify the accuracy of the algorithm and the correctness of the implementation, we simulate the prop-
agation of the whistler wave in a periodic box. In our standard runs we use the second order MUSCL scheme
with the Lax–Friedrichs flux and the MC limiter with b = 1.5. The explicit runs use a two stage Runge–Kutta
scheme with a CFL number 0.8. The implicit runs use the BDF2 scheme, a time step linearly proportional to
the cell size, and a reduced numerical flux with W = 0 in (36). We apply the 8-wave scheme to control the
divergence of the magnetic field in the two-dimensional test, although this is not really necessary in these test
runs. Any deviation from these standard parameters will be noted.

We start with the grid aligned case on a uniform grid. The computational domain is �100 < x < 100 with
periodic boundaries. The initial condition is uniform for the following variables: q = 1, vx = �0.001, Bx = 100
and P = 1, so the Alfvén speed is cA ¼ Bx=

ffiffiffi
q
p ¼ 100 and the sound speed is cS ¼

ffiffiffiffiffiffiffiffiffiffi
cp=q

p
	 1:291 where c = 5/

3. The choice of a non-zero vx avoids the problems with normalization in the implicit scheme. To make the
whistler wave speed comparable to the Alfvén speed, we set the ion mass per charge M/e = 35.1076 (an admit-
tedly arbitrary number in the normalized units). We will study the longest wave that fits into the computa-
tional domain, so the wave length is k = 200 and the wave number is k = 2p/k = p/100. The exact formula
for the phase speed of the right going whistler wave relative to the fluid is
cw ¼
x
k
¼ w

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

A þ
w2

4

r
	 169:345; ð54Þ
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where w = (M/e)(kjBj)/q 	 110.294, and the amplitude ratio of the transverse velocity and magnetic perturba-
tions is
Table
Relativ

n

16
32
64

128
jdvy;zj
jdBy;zj

¼ jBxj
cwq
	 0:59051: ð55Þ
The whistler wave is initialized with
vy ¼ �0:00590511 cosðkxÞ; ð56Þ
vz ¼ þ0:00590511 sinðkxÞ; ð57Þ
By ¼ þ0:001 cosðkxÞ; ð58Þ
Bz ¼ �0:001 sinðkxÞ: ð59Þ
Note that this is a circularly polarized wave, and the velocity (and the electric field) is right-hand circularly
polarized. The pressure, the density and the x components of the velocity and magnetic field are not affected
by the wave. The final time is set to tmax = k/jux + cwj 	 1.18103 so that the wave arrives back at the original
position by the end of the run. The numerical error is calculated from the difference between the initial and
final vz:
En ¼
Pn

i¼1jvz;iðtmaxÞ � vz;ið0ÞjPn
i¼1jvz;ið0Þj

; ð60Þ
where i = 1, . . . ,n indexes the grid cells in the whole computational domain. We could use the error in vy, By or
Bz just as well, and the results would remain essentially the same.

We repeat the simulation with 4 different resolutions using n = 16, 32, 64, 128 cells, respectively. The expli-
cit scheme requires 141, 489, 1811, and 6955 time steps respectively, ie. the time step Dt is roughly proportional
to 1/Dx2. For the implicit scheme the time step is set to be proportional to 1/Dx and it takes 40, 80, 160 and
320 time steps to finish the runs, respectively. As expected, the implicit time stepping becomes relatively more
efficient at finer resolutions.

The first four columns of Table 1 contain the errors of the explicit runs with minmod and MC limiters and
the implicit runs with W = 1 and W = 0 in (36) both with the MC limiter, respectively. The fifth column is the
implicit scheme with W = 0 and the minmod limiter. In accordance with the analysis presented in Subsection
3.5 the explicit scheme with the minmod limiter provides a roughly first order convergence rate only, while the
MC limiter gives almost perfect second order convergence. Similarly, the implicit scheme using a numerical
flux based on the full wave speed gives first order convergence rate only, while setting W = 0 in (36) provides
second order convergence rate, in full agreement with the discussion in Section 3.6. The implicit scheme with
W = 0 and the minmod limiter converges at a second order rate although the results are less accurate than for
the MC limiter (columns 4 and 5). It is interesting to note that the implicit scheme is more accurate than the
explicit scheme (compare columns 2 and 4). This is due to the fact that explicit scheme requires the full numer-
ical flux with W = 1 for stability, while the implicit scheme is stable with a less diffusive numerical flux too.

We repeated the test on a two-dimensional uniform grid with rotated initial conditions. The rotation angle
is a = tan�10.5 = 26.56� so there is a translational symmetry in the (1, 2) direction as shown in Fig. 4. The
boundary conditions remain periodic in the X direction, while we apply a sheared zero gradient in the
(1, 2) direction along the Y boundaries. The length of the computational domain is increased by a factor
of 1= cosðaÞ ¼

ffiffiffi
5
p

=2 to �111.803 < x < 111.803 to maintain the periodicity in the X direction. All the vector
1
e errors for whistler wave test on a uniform grid

expl/mm explicit impl/W = 1 implicit impl/mm expl/rot impl/rot

1.236 0.42261 0.875 0.15352 0.19424 0.30733 0.18311
0.614 0.08537 0.465 0.03856 0.04881 0.06167 0.04266
0.265 0.01926 0.243 0.00100 0.01234 0.01388 0.01034
0.118 0.00519 0.124 0.00277 0.00316 0.00373 0.00304
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Fig. 4. The z component of the magnetic field at the initial (left panel) and final (right panel) times for the whistler wave test on a periodic
non-uniform grid. The crosses indicate the cell centers.

Table 2
Relative errors for whistler wave test on a non-uniform grid

n explicit implicit expl/rot. impl/rot.

24 0.2514 0.05218 0.2632 0.07958
48 0.0517 0.01244 0.0522 0.01968
96 0.0114 0.00305 0.0124 0.00490
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variables (velocity and magnetic field) as well as the perturbation are rotated by a. As the last two columns of
Table 1 shows, the convergence rate remains second order. Somewhat surprisingly the errors for the rotated
explicit run are somewhat smaller than in the grid aligned case. This is probably due to the fact that the numer-
ical flux is proportional to jBxj and jByj, which is different in the rotated case than in the grid aligned case.

The next set of tests are done on a non-uniform grid. We refine the middle part of the grid for jxj < 50 in the
1D case, and jxj,jyj < 50/cosa in the two-dimensional case. The error is calculated the same way as for the uni-
form grid (equal weight for all cells). The results are shown in Table 2 for the explicit and implicit schemes with
grid-aligned and rotated initial conditions. The number of cells refer to a 1D cut, e.g. n = 48 corresponds to
the base grid with n = 32 which is refined in the middle adding another 16 cells. The time step for the explicit
scheme is determined by the smaller cells. For the implicit scheme we also used the same time step as on the
uniform grid corresponding to the finer cells, so the number of explicit and implicit steps for n = 24,48,96 are
489, 1811, 6955 and 80, 160, 320, respectively. The results confirm that the scheme remains second order accu-
rate at resolution changes.

4.2. Reconnection in the GEM challenge

The Geospace Environmental Modeling (GEM) magnetic reconnection challenge [3] is a very well studied
two-dimensional reconnection problem. There are several published solutions obtained with other Hall MHD
codes, so this problem is suitable to further verify our implementation.

The computational domain is Lx = 25.6 times Lz = 12.8 centered around the origin (for sake of comparison
we follow [3] and use x and z coordinates). The initial condition is
Bx ¼ tanhð2zÞ � Ayðp=LzÞ cosð2px=LxÞ sinðpz=LzÞ ð61Þ
Bz ¼ Ayð2p=LxÞ cosð2px=LxÞ sinðpz=LzÞ ð62Þ
p ¼ 0:6� tanhð2zÞ2=2 ð63Þ
with v = 0, By = 0 and q = 2p so that the normalized temperature is 1/2. The adiabatic index is c = 5/3. The
perturbation of the magnetic field is defined through the vector potential with amplitude Ay. Without this
perturbation the current sheet is in pressure equilibrium. The boundary conditions are periodic in the x direc-
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tion, and floating (zero gradient) for the other boundaries (instead of ideally conducting). The simulation is
run until t = 40.

The initial perturbation forces the reconnection site to be at the origin. We found, however, that in the Hall
MHD simulations the configuration evolves into two reconnection sites and an island in the middle (see
Fig. 5), as long as the initial perturbation is small (Ay = 0.1). For larger initial perturbation (Ay = 0.5) the sin-
gle reconnection site is stable. We note that the formation of an island in the GEM challenge problem is not
unique to our code (J. Huba, L. Chacon private communications).

The computational domain is resolved by 64 times 128 rectangular grid cells with Dx = 0.4 and Dz = 0.1.
We use the second order Lax–Friedrichs scheme, the MC limiter and b = 1.2. For the resistive MHD simu-
lations (with no Hall term) the resistivity is set to g = 0.005. In the Hall MHD runs the resistivity is the same
and the normalized ion mass per charge is 1. Fig. 6 shows the time dependence of the reconnected fluxR Lx=2

0 Bzdx for classical resistive and Hall MHD simulations. The results agree quite well with Fig. 1 in Birn
et al. [3] despite the split reconnection site in the Hall MHD simulation. We checked that starting with a larger
perturbation results in a single reconnection site and the reconnection rate remains about the same.
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Fig. 5. The current (color) and some magnetic field lines at t = 30 for the Hall MHD simulation of the GEM reconnection problem.
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4.3. Three-dimensional magnetosphere simulations and parallel scaling

Finally, we tested if the code gives physically reasonable results for magnetosphere type problems. We are
solving the flow of the solar wind around the Earth. The solar wind flows in the x direction, the dipole is
aligned with the z direction, and the magnetic field of the solar wind has a pure Bz component only that is
opposite of the orientation of the dipole field in the equatorial plane. For classical MHD the solution is per-
fectly symmetric in the ±Z and ±Y directions. For Hall MHD we expect the solution to be asymmetric which
means that By can be non-zero in the Y = 0 plane.

Fig. 7 shows the magnetosphere solution together with the grid structure in the Y = 0 plane. Both the day-
side (left of the body) and the magnetotail reconnection regions are highly resolved with 1/32RE (Earth radii)
Fig. 7. Magnetosphere solution in the Y = 0 plane. The black crosses show the grid cell centers. Distance is measured in Earth radii.

Fig. 8. Magnetosphere field solution with Hall MHD. Note the quadrupolar By field in the tail.



6982 G. Tóth et al. / Journal of Computational Physics 227 (2008) 6967–6984
cells. There are 71,000 4 � 4 � 4 grid blocks with more than 4.5 million cells altogether. Fig. 8 shows the solu-
tion obtained with local time stepping. The By component has the typical quadrupolar structure at the mag-
netotail. The day-side reconnection site moved northward which suggests that the solution is unstable. This is
most likely a particular manifestation of the tearing mode instability, also known as Flux Transfer Events
(FTE) in the space physics literature (e.g. [18]). The presence of this instability as well as the lack of perfect
convergence of the local time stepping scheme suggests that the solution is time dependent despite the fixed
boundary conditions.

We have repeated the simulation in time dependent mode with a slightly reduced resolution. The grid con-
sists of 4848 blocks of size 8 � 8 � 8 cells, or about 2.5 million cells altogether. The cell sizes range from 8 to 1/
16RE. The high resolution is concentrated around the reconnection region in the magnetotail and Hall MHD
is solved in this region only. Outside this region the Hall term is neglected. In this time accurates simulation we
have indeed found that the solution shows a quasi-periodic behavior with periodic plasmoid formation. The
physical interpretation of these results are outside the scope of this paper, on the other hand this rather expen-
sive simulation provides an excellent demonstration of the parallel scaling and efficiency of the explicit and
implicit Hall MHD schemes.

We present scaling results on an SGI Altix super computer (columbia at NASA Ames) for short runs (25 s)
starting from a restart file saved at about 2 h simulation time. Fig. 9 shows scaling curves for explicit, implicit
and explicit/implicit time stepping, respectively. For the explicit scheme the stability condition required
Dt = 0.00295 s time steps, while the time step for the implicit scheme was 1 s. The figure demonstrates a near
perfect scaling of the explicit scheme from 32 to 1616 processors, which is quite remarkable for strong scaling
with a fixed problem size. Note that there are only 3 blocks per processor when the code runs on 1616
processors.

The fully implicit and explicit/implicit algorithms are about 14 and 20 times faster on 32 CPU-s than the
explicit scheme, respectively. The implicit time step is about 330 times larger than the explicit time step, and
the implicit scheme requires about 25 Krylov iterations per step. The Krylov iterations are less expensive than
the full explicit time step, because the Jacobian-free evaluation uses the first order scheme (no limiters), but the
construction and application of the preconditioner also takes up significant time. The overall gain of the fully
implicit scheme over the explicit scheme happens to be close to the simple estimate of 330/25 = 13.2.
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G. Tóth et al. / Journal of Computational Physics 227 (2008) 6967–6984 6983
As the figure shows the implicit schemes scale quite well up to 256 processors. In the explicit/implicit
scheme most of the blocks (about 3400) require implicit time steps for the selected time step, so there is rel-
atively little difference between the efficiency of the implicit and explicit/implicit algorithms.

5. Conclusions

We have developed a second order accurate Hall MHD scheme for block adaptive Cartesian or general
structured grids using both explicit and implicit time integration. For steady state solutions the explicit scheme
can be used in combination with local time stepping. Care should be taken to use symmetric type limiters (like
MC) instead of asymmetric limiters (like minmod or super-bee) to achieve second order accuracy in smooth
regions. For time accurate runs the implicit scheme is much more efficient than the explicit scheme if the whis-
tler wave speed is dominant. The preconditioner has to take into account the terms responsible for the whistler
wave. Using the implicit scheme the Hall MHD simulation ran about 3–4 times slower than the classical MHD
simulation, which is quite reasonable given the stiffness of the Hall MHD equations due to the whistler wave.

The efficiency and good parallel scaling of our Hall MHD scheme enables us to do steady state and time
accurate simulations in three-dimensional. We have already used the Hall MHD code to simulate Titan’s
interaction with the surrounding plasma [10]. This steady state simulation uses a spherical grid with logarith-
mic stretching in the radial direction. As shown by Ma et al. [10] the Hall MHD results match the values mea-
sured by the Cassini satellite significantly better than the results obtained with classical MHD simulations. We
plan to use the Hall MHD code to study many space physics problems in the future.

While Hall MHD captures the most important kinetic effects, it does not describe the full physics. Compar-
ing Hall MHD and hybrid model results [24,6,23], it was found that the off-diagonal elements of the pressure
tensor play an important role. We plan to extend our code to use a non-isotropic pressure equation with field-
aligned and orthogonal components. We are also working on extending our code to multi-fluid Hall MHD
with ions of different mass.
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